切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2018, Vol. 12 ›› Issue (02) : 204 -208. doi: 10.3877/cma.j.issn.1674-1358.2018.02.021

所属专题: 文献

基础论著

拮抗Toll样受体4的表达对内毒素血症小鼠肾脏损伤的保护作用
冯莉芳1, 王鲁文1, 张海月1, 龚作炯1,()   
  1. 1. 430060 武汉市,武汉大学人民医院感染科
  • 收稿日期:2017-08-08 出版日期:2018-04-15
  • 通信作者: 龚作炯

Protective effect of antagonism of toll-like receptor 4 expression on renal injury in LPS-induced sepsis mice

Lifang Feng1, Luwen Wang1, Haiyue Zhang1, Zuojiong Gong1,()   

  1. 1. Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
  • Received:2017-08-08 Published:2018-04-15
  • Corresponding author: Zuojiong Gong
  • About author:
    Corresponding author: Gong Zuojiong, Email:
引用本文:

冯莉芳, 王鲁文, 张海月, 龚作炯. 拮抗Toll样受体4的表达对内毒素血症小鼠肾脏损伤的保护作用[J]. 中华实验和临床感染病杂志(电子版), 2018, 12(02): 204-208.

Lifang Feng, Luwen Wang, Haiyue Zhang, Zuojiong Gong. Protective effect of antagonism of toll-like receptor 4 expression on renal injury in LPS-induced sepsis mice[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2018, 12(02): 204-208.

目的

观察拮抗Toll样受体4(TLR4)的表达对内毒素血症小鼠肾脏损伤的保护作用以及对细胞核因子-κB(NF-κB)p65的影响。

方法

采用内毒素(LPS)诱导的小鼠急性肾功能衰竭模型,并应用TLR4单克隆抗体进行干预,观察TLR4单克隆抗体对内毒素血症小鼠的肾脏组织学、血清肌酐(Cr)、尿素氮(BUN)、胱抑素C、白细胞介素(IL)-1β、IL-6水平以及肾组织中TLR4及NF-κB水平的影响。

结果

与模型组比较,TLR4单克隆抗体能够明显改善内毒素血症小鼠肾脏组织病理学损害;降低血清中Cr、BUN、胱抑素C、IL-β和IL-6水平(t = 7.20、7.86、9.99、8.79、3.92,P均< 0.05),并且降低肾组织中TLR4及NF-κB p65水平(t = 20.94、11.21,P均< 0.05)。

结论

TLR4单克隆抗体能够保护内毒素血症小鼠肾脏组织损伤,其作用机制可能与调节TLR4/NF-κB信号转导通路有关。

Objective

To investigate the protective effect of antagonism of toll-like receptor 4 (TLR4) expression on renal injury in LPS (lipopolysaccharide)-induced sepsis mice, and its influence on nuclear factor (NF)-κB p65.

Methods

Acute kidney injury was induced by LPS. Anti-TLR4 monoclonal antibody was applied to treat the mice. The effects of TLR4 monoclonal antibody on renal histology, serum creatinine (Cr), blood urea nitrogen (BUN), cystatin C, interleukin (IL)-1β and IL-6 levels, and TLR4 and NF-κB protein levers in renal tissue of mice with endotoxemia were analyzed.

Results

The pathological changes of renal tissue were improved by blockade of TLR4 compared with model group. The serum levels of Cr, BUN, cystatin C, IL-1β and IL-6 were decreased by treatment of TLR4 monoclonal antibody compared with model group (t =7.20, 7.86, 9.99, 8.79 and 3.92, respectively; all P < 0.05). The TLR4 and NF-κB protein levels in renal tissue were also decreased by blockade of TLR4 (t = 20.94, 11.21, respectively; both P < 0.05).

Conclusions

Blockade of TLR4 could protect renal injury in LPS-induced sepsis mice. The mechanism may be related to the regulation of TLR4/NF-κB signaling pathway.

图1 肾脏组织HE染色(200 ×)
图2 各组小鼠血清Cr、BUN和胱抑素C的水平
图3 各组小鼠血清IL-1β和IL-6水平
图4 各组小鼠血清及肾脏组织中TLR4和NF-κB p65的水平
[1]
Rhee C, Klompas M. New sepsis and septic shock definitions: clinical implications and controversies[J]. Infect Dis Clin North Am,2017,31(3):397-413.
[2]
Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis[J]. Semin Immunopathol,2017,39(5):517-528.
[3]
Shankar-Hari M, Ambler M, Mahalingasivam V, et al. Evidence for a causal link between sepsis and long-term mortality: a systematic review of epidemiologic studies[J]. Crit Care,2016,20(1):1-13.
[4]
Lin JC, Spinella PC, Fitzgerald JC, et al. New or progressive multiple organ dysfunction syndrome in pediatric severe sepsis: A sepsis phenotype with higher morbidity and mortality[J]. Pediatr Crit Care Med,2017,18(1):8-16.
[5]
Wei Y, Yang J, Wang J, et al. Successful treatment with fecal microbiota transplantation in patients with multiple organ dysfunction syndrome and diarrhea following severe sepsis[J]. Crit Care,2016,20(1):332-340.
[6]
Wang B, Chen G, Zhang J, et al. Increased neutrophil gelatinase-associated lipocalin is associated with mortality and multiple organ dysfunction syndrome in severe sepsis and septic shock[J]. Shock,2015,44(3):234-238.
[7]
Gómez H, Kellum JA, Ronco C. Metabolic reprogramming and tolerance during sepsis-induced AKI[J]. Nat Rev Nephrol,2017,13(3):143-151.
[8]
Burger D, Erdbrügger U, Burns KD. Re: Microparticles: markers and mediators of sepsis-induced microvascular dysfunction, immunosuppression, and AKI[J]. Kidney Int,2015,88(4):915-916.
[9]
Emlet DR, Shaw AD, Kellum JA. Sepsis-associated AKI: epithelial cell dysfunction[J]. Semin Nephrol,2015,35(1):85-95.
[10]
Godin M, Murray P, Mehta RL. Clinical approach to the patient with AKI and sepsis[J]. Semin Nephrol,2015,35(1):12-22.
[11]
Shao Y, Fan Y, Xie Y, et al. Effect of continuous renal replacement therapy on kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin in patients with septic acute kidney injury[J]. Exp Ther Med,2017,13(6):3594-3602.
[12]
Ueno T. The roles of continuous renal replacement therapy in septic acute kidney injury[J]. Artif Organs,2017,41(7):667-672.
[13]
Leifer CA, Medvedev AE. Molecular mechanisms of regulation of Toll-like receptor signaling[J]. J Leukoc Biol,2016,100(5):927-941.
[14]
Sestito SE, Facchini FA, Morbioli I, et al. Amphiphilic guanidinocalixarenes inhibit lipopolysaccharide (LPS)- and lectin-stimulated Toll-like receptor 4 (TLR4) signaling[J]. J Med Chem,2017,60(12):4882-4892.
[15]
Li N, Zhang X, Dong H, et al. Lithium ameliorates LPS-induced astrocytes activation partly via inhibition of Toll-Like receptor 4 expression[J]. Cell Physiol Biochem,2016,38(2):714-725.
[16]
Lang Y, Jiang Y, Gao M, et al. Interleukin-1 receptor 2: A new biomarker for sepsis diagnosis and Gram-negative/Gram-positive bacterial differentiation[J]. Shock,2017,47(1):119-124.
[17]
Kurt AN, Aygun AD, Godekmerdan A, et al. Serum IL-1-beta, IL-6, IL-8, and TNF-alpha levels in early diagnosis and management of neonatal sepsis[J]. Mediators Inflamm,2007,2007:31397.
[18]
Johnson DW, Kalil AC. Is interleukin-1 receptor blockade ready for prime time in patients with severe sepsis and macrophage activation syndrome?[J]. Crit Care Med,2016,44(2):443-444.
[19]
Yang SK, Liu J, Zhang XM, et al. Diagnostic accuracy of serum cystatin C for the evaluation of renal dysfunction in diabetic patients: A Meta-analysis[J]. Ther Apher Dial,2016,20(6):579-587.
[20]
Leem AY, Park MS, Park BH, et al. Value of serum cystatin C measurement in the diagnosis of sepsis-induced kidney injury and prediction of renal function recovery[J]. Yonsei Med J,2017,58(3):604-612.
[1] 种静, 杨雪, 武斌, 李军, 张靓, 于宁. 剪切波弹性成像定量评估糖尿病肾病患者肾损害程度[J]. 中华医学超声杂志(电子版), 2021, 18(04): 398-401.
[2] 韩萌萌, 冯雪园, 马宁. 注射用曲妥珠单克隆抗体致重度血小板减少一例[J]. 中华乳腺病杂志(电子版), 2023, 17(03): 187-189.
[3] 李凯强, 薛兵建, 王新星, 孙萌, 裴新红. 艾立布林联合吡咯替尼加曲妥珠单克隆抗体新辅助治疗人表皮生长因子受体-2阳性局部晚期乳腺癌一例[J]. 中华乳腺病杂志(电子版), 2022, 16(04): 257-259.
[4] 张梦璐, 邢泽宇, 王昕, 刘嘉琦, 刘刚, 王翔. 血管内皮生长因子在炎性乳腺癌中的应用[J]. 中华乳腺病杂志(电子版), 2021, 15(05): 302-306.
[5] 李磊, 吴昊, 吴良绍. 关节镜下膝骨关节炎特征与微小RNA-27a的相关性[J]. 中华关节外科杂志(电子版), 2022, 16(01): 16-21.
[6] 张信, 高标, 陈启明, 吴定宇, 曹恒昌, 范昭. 狂犬病免疫球蛋白研究与应用进展[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(04): 229-233.
[7] 徐纪文, 徐静雅, 宗斌, 马爽. COPD并发肺部感染TLR4/NF-κB通路与细胞因子水平及意义[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 221-223.
[8] 程莉, 章晓良. 血尿酸和胱抑素C与糖尿病视网膜病变患者合并糖尿病肾病的关系及影响因素[J]. 中华肾病研究电子杂志, 2023, 12(04): 194-199.
[9] 何彬, 王静. 彩色多普勒超声血流参数、血清尿酸、胱抑素C对短暂性脑缺血发作患者颈动脉狭窄的诊断价值[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 289-294.
[10] 罗洁, 李杰. 早产儿脑损伤与血清中Tau、TLR4变化水平的关系研究[J]. 中华神经创伤外科电子杂志, 2022, 08(06): 346-350.
[11] 姚晏, 黄惠斌. 影像技术和分子生物标志物在重症患者骨骼肌质量评价中的应用[J]. 中华重症医学电子杂志, 2022, 08(04): 371-377.
[12] 程旭, 俞悦, 裴小华. 核素肾小球滤过率法在临床开展的现状与思考[J]. 中华诊断学电子杂志, 2023, 11(02): 73-76.
[13] 王可珺, 李吉镇, 马标, 续慧超, 谌红珊, 刘雷. 肌酐/胱抑素C对晚期上皮性卵巢癌术后并发症的预测价值[J]. 中华诊断学电子杂志, 2023, 11(01): 49-55.
[14] 刘天姿, 王宝军. Toll样受体4在阿尔茨海默病中的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 404-409.
[15] 高海杰, 王宝军. TLR4信号通路与神经系统疾病关系的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(01): 61-65.
阅读次数
全文


摘要