切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2017, Vol. 11 ›› Issue (02) : 111 -116. doi: 10.3877/cma.j.issn.1674-1358.2017.02.002

综述

唾液酸结合性免疫球蛋白样凝集素9:调节中性粒细胞凋亡的一种新型分子
褚萨萨1, 朱进2, 汪茂荣3,()   
  1. 1. 210002 南京市,安徽医科大学解放军八一临床学院全军肝病中心
    2. 210002 南京市,解放军八一医院全军肝病中心
    3. 210002 南京市,南京军区军事医学研究所
  • 收稿日期:2016-04-21 出版日期:2017-04-15
  • 通信作者: 汪茂荣
  • 基金资助:
    军队特需药品保密专项"十二五"计划课题(No. 2013ZX09J13110-05B)

Sialic acid-binding immunoglobulin-like lectins-9: a novel regulator of neutrophil apoptosis

Sasa Chu1, jin Zhu2, Maorong Wang3,()   

  1. 1. Liver Diseases Centre of PLA, 81st Hospital of PLA, Clinical College, Affiliated to Anhui Medical University, Nanjing 210002, China
    2. Liver Diseases Centre of PLA, 81st Hospital of PLA, Nanjing 210002, China
    3. Huadong Medical Institute of Biotechniques, Nanjing 210002, China
  • Received:2016-04-21 Published:2017-04-15
  • Corresponding author: Maorong Wang
引用本文:

褚萨萨, 朱进, 汪茂荣. 唾液酸结合性免疫球蛋白样凝集素9:调节中性粒细胞凋亡的一种新型分子[J]. 中华实验和临床感染病杂志(电子版), 2017, 11(02): 111-116.

Sasa Chu, jin Zhu, Maorong Wang. Sialic acid-binding immunoglobulin-like lectins-9: a novel regulator of neutrophil apoptosis[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2017, 11(02): 111-116.

唾液酸结合性免疫球蛋白样凝集素(Siglec)是免疫受体超家族中的主要成员,表达于各类免疫细胞,能够识别特定的唾液酸。中性粒细胞作为重要的天然免疫细胞,参与早期炎症反应的发生、发展,细胞凋亡在调节中性粒细胞数量的过程中发挥着关键作用。本文就Siglec-9在调节中性粒细胞的招募、凋亡,影响其炎症应答,促进细胞自噬以及Siglec-9在中性粒细胞引起临床疾病方面的研究进展作一综述。

Sialic acid-binding immunoglobulin-like lectins (Siglecs) are members of the major superfamily of immune receptors differentially which presented on the surface of hematopoietic cells and recognized sialic acid. Neutrophils are recognized as one of the key effector cells of the innate immune system during the development of the early inflammatory responses. Apoposis plays a key role in the regulation of the number of neutrophils. This paper reviews the role of Siglec-9 in the regulation of neutrophil recruitment, apoptosis, inflammatory responses, autophagy and recent progress of Siglec-9 in clinical diseases.

1
Läubli H, Alisson-Silva F, Stanczak MA, et al. Lectin galactoside-binding soluble 3 binding protein (LGALS3BP) is a tumor-associated immunomodulatory ligand for CD33-related Siglecs[J]. J Biol Chem, 2014,289(48):33481-33491.
2
Macauley MS, Crocker PR, Paulson JC. Siglec-mediated regulation of immune cell function in disease[J]. Nat Rev Immunol,2014,14(10):653-666.
3
Daëron M, Jaeger S, Du Pasquier L, et al. Immunoreceptor tyrosine-based inhibition motifs: a quest in the past and future[J]. Immunol Rev,2008,224:11-43.
4
Barrow AD, Trowsdale J. You say ITAM and I say ITIM, let’s call the whole thing off: the ambiguity of immunoreceptor signalling[J]. Eur J Immunol,2006,36(7):1646-1653.
5
Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system[J]. Nat Rev Immunol,2007,7(4):255-266.
6
Crocker PR, Varki A. Siglecs, sialic acids and innate immunity[J]. Trends Immunol,2001,22(6):337-342.
7
Crocker PR. Siglecs: sialic-acid-binding immunoglobulin-like lectins in cell-cell interactions and signalling[J]. Curr Opin Struct Biol,2002,12(5):609-615.
8
Jia Y, Yu H, Fernandes SM, et al. Expression of ligands for Siglec-8 and Siglec-9 in human airways and airway cells[J]. J Allergy Clin Immunol,2015,135(3):799-810
9
Rashmi R, Bode BP, Panesar N, et al. Siglec-9 and SHP-1 are differentially expressed in neonatal and adult neutrophils[J]. Pediatr Res,2009,66(3):266-271..
10
Higuchi H, Shoji T, Iijima S, et al. Constitutively expressed Siglec-9 inhibits LPS-induced CCR7, but enhances IL-4-induced CD200R expression in human macrophages[J]. Biosci Biotechnol Biochem,2016,80(6):1141-1148.
11
Jandus C, Boligan KF, Chijioke O, et al. Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance[J]. J Clin Invest,2014,124(4):1810-1820.
12
Avril T, Attrill H, Zhang J, et al. Negative regulation of leucocyte functions by CD33-related siglecs[J]. Biochem Soc Trans,2006,34(Pt 6):1024-1027.
13
Varki A, Angata T. Siglecs--the major subfamily of I-type lectins[J]. Glycobiology,2006,16(1):1R-27R.
14
Secundino I, Lizcano A, Roupé KM, et al. Host and pathogen hyaluronan signal through human siglec-9 to suppress neutrophil activation[J]. J Mol Med (Berl),2016,94(2):219-233.
15
Shlapatska LM, Mikhalap SV, Berdova AG, et al. CD150 association with either the SH2-containing inositol phosphatase or the SH2-containing protein tyrosine phosphatase is regulated by the adaptor protein SH2D1A[J]. J Immunol,2001,166(9):5480-5487.
16
Avril T, Floyd H, Lopez F, et al. The membrane-proximal immunoreceptor tyrosine-based inhibitory motif is critical for the inhibitory signaling mediated by Siglecs-7 and -9, CD33-related Siglecs expressed on human monocytes and NK cells[J]. J Immunol,2004,173(11):6841-6849.
17
von GS, Yousefi S, Seitz M, et al. Siglec-9 transduces apoptotic and nonapoptotic death signals into neutrophils depending on the proinflammatory cytokine environment[J]. Blood,2005,106(4):1423-1431.
18
von GS, Simon HU. Cell death modulation by intravenous immunoglobulin[J]. J Clin Immunol,2010,30(Suppl 1):S24-S30.
19
Zhang JQ, Nicoll G, Jones C, et al. Siglec-9, a novel sialic acid binding member of the immunoglobulin superfamily expressed broadly on human blood leukocytes[J]. J Biol Chem,2000,275(29):22121-22126.
20
Thieblemont N, Wright HL, Edwards SW, et al. Human neutrophils in auto-immunity[J]. Semin Immunol,2016,28(2):159-173.
21
McCracken JM, Allen LA. Regulation of human neutrophil apoptosis and lifespan in health and disease[J]. J Cell Death,2014,7(8):15-23.
22
Kobayashi SD, Braughton KR, Whitney AR, et al. Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils[J]. Proc Natl Acad Sci USA,2003,100(19):10948-10953.
23
Kobayashi SD, Voyich JM, Buhl CL, et al. Global changes in gene expression by human polymorphonuclear leukocytes during receptor-mediated phagocytosis: cell fate is regulated at the level of gene expression[J]. Proc Natl Acad Sci USA,2002,99(10):6901-6906.
24
Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level[J]. Nat Rev Mol Cell Biol,2008,9(3):231-241.
25
Maianski NA, Geissler J, Srinivasula SM, et al. Functional characterization of mitochondria in neutrophils: a role restricted to apoptosis[J]. Cell Death Differ,2004,11(2):143-153.
26
Green DR, Kroemer G. The pathophysiology of mitochondrial cell death[J]. Science,2004,305(5684):626-629.
27
Fox JL, MacFarlane M. Targeting cell death signalling in cancer: minimising 'Collateral damage’[J]. Br J Cancer,2016,115(1):5-11.
28
李敏,林俊. 细胞凋亡途径及其机制[J]. 国际妇产科学杂志,2014,(2):103-107.
29
Jia LT, Chen SY, Yang AG. Cancer gene therapy targeting cellular apoptosis machinery[J]. Cancer Treat Rev,2012,38(7):868-876.
30
Dong Z, Liang S, Hu J, et al. Autophagy as a target for hematological malignancy therapy[J]. Blood Rev,2016,30(5):369-380.
31
Chen Y, Klionsky DJ. The regulation of autophagy -- unanswered questions[J]. J Cell Sci,2011,124(Pt 2):161-170.
32
Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation[J]. Nature,2011,469(7330):323-335.
33
Ryter SW, Choi AM. Autophagy in lung disease pathogenesis and therapeutics[J]. Redox Biol,2015,4(4):215-225.
34
Chargui A, El MMV. Autophagy mediates neutrophil responses to bacterial infection[J]. APMIS,2014,122(11):1047-1058.
35
Lamark T, Johansen T. Aggrephagy: selective disposal of protein aggregates by macroautophagy[J]. Int J Cell Biol,2012,(7):736905.
36
Sônego F, Castanheira FV, Ferreira RG, et al. Paradoxical Roles of the Neutrophil in Sepsis: Protective and Deleterious[J]. Front Immunol,2016,7(1):155-156.
37
von GS, Simon HU. Autophagic-like cell death in neutrophils induced by autoantibodies[J]. Autophagy,2007,3(1):67-68.
38
Duquette SC, Fischer CD, Feener TD, et al. Anti-inflammatory effects of retinoids and carotenoid derivatives on caspase-3-dependent apoptosis and efferocytosis of bovine neutrophils[J]. Am J Vet Res,2014,75(12):1064-1075.
39
Ando M, Tu W, Nishijima K, et al. Siglec-9 enhances IL-10 production in macrophages via tyrosine-based motifs[J]. Biochem Biophys Res Commun,2008,369(3):878-883.
40
Bayry J, Thirion M, Misra N, et al. Mechanisms of action of intravenous immunoglobulin in autoimmune and inflammatory diseases[J]. Neurol Sci,2003,24(Suppl 4):S217-S221.
41
Kaveri SV. Mechanisms of action of intravenous immunoglobulins[J]. Bull Acad Natl Med,2012,196(1):39-47, 48.
42
Trautmann A, Akdis M, Schmid-Grendelmeier P, et al. Targeting keratinocyte apoptosis in the treatment of atopic dermatitis and allergic contact dermatitis[J]. J Allergy Clin Immunol,2001,108(5):839-846.
43
Prins C, Kerdel FA, Padilla RS, et al. Treatment of toxic epidermal necrolysis with high-dose intravenous immunoglobulins: multicenter retrospective analysis of 48 consecutive cases[J]. Arch Dermatol,2003,139(1):26-32.
44
Altznauer F, von GS, Späth P, et al. Concurrent presence of agonistic and antagonistic anti-CD95 autoantibodies in intravenous Ig preparations[J]. J Allergy Clin Immunol,2003,112(6):1185-1190.
45
von GS, Schaub A, Vogel M, et al. Immunologic and functional evidence for anti-Siglec-9 autoantibodies in intravenous immunoglobulin preparations[J]. Blood,2006,108(13):4255-4259.
46
McMillan SJ, Sharma RS, Richards HE, et al. Siglec-E promotes β2-integrin-dependent NADPH oxidase activation to suppress neutrophil recruitment to the lung[J]. J Biol Chem,2014,289(29):20370-20376.
47
Hoyal CR, Gutierrez A, Young BM, et al. Modulation of p47PHOX activity by site-specific phosphorylation: Akt-dependent activation of the NADPH oxidase[J]. Proc Natl Acad Sci USA,2003,100(9):5130-5135.
48
Moreland JG, Fuhrman RM, Pruessner JA, et al. CD11b and intercellular adhesion molecule-1 are involved in pulmonary neutrophil recruitment in lipopolysaccharide-induced airway disease[J]. Am J Respir Cell Mol Biol,2002,27(4):474-480.
49
McMillan SJ, Sharma RS, McKenzie EJ, et al. Siglec-E is a negative regulator of acute pulmonary neutrophil inflammation and suppresses CD11b β2-integrin-dependent signaling[J]. Blood,2013,121(11):2084-2094.
50
Hughes BJ, Hollers JC, Crockett-Torabi E, et al. Recruitment of CD11b/CD18 to the neutrophil surface and adherence-dependent cell locomotion[J]. J Clin Invest,1992,90(5):1687-1696.
51
Frommhold D, Mannigel I, Schymeinsky J, et al. Spleen tyrosine kinase Syk is critical for sustained leukocyte adhesion during inflammation in vivo[J]. BMC Immunol,2007,8(10):31-32.
52
Haddad EB, Birrell M, McCluskie K, et al. Role of p38 MAP kinase in LPS-induced airway inflammation in the rat[J]. Br J Pharmacol,2001,132(8):1715-1724.
53
Yousefi S, Perozzo R, Schmid I, et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis[J]. Nat Cell Biol,2006,8(10):1124-1132.
[1] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[2] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[3] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[4] 陆美琪, 赵洁, 单菲, 王兴蕾, 姜笃银. 药物相关坏疽性脓皮病的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 447-450.
[5] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[6] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[7] 伍学成, 李远伟, 袁武雄, 王建松, 石泳中, 卢强, 李卓, 陈佳, 刘哲, 滕伊漓, 高智勇. 炎症介质谱联合降钙素原在尿源性脓毒血症中的诊断价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 476-480.
[8] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[9] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[10] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[11] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[12] 朱风尚, 舍玲, 丁永年, 杨长青. 警惕炎症性肠病与少见肠道疾病的鉴别诊断[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 273-276.
[13] 吴萌, 吴国仲, 王贵红, 端靓靓, 施杰, 王旭, 余婷, 刘伟. IgA肾病患者中性粒细胞-淋巴细胞比值与肾小管萎缩/间质纤维化相关性分析[J]. 中华临床医师杂志(电子版), 2023, 17(9): 972-979.
[14] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要