1 |
Läubli H, Alisson-Silva F, Stanczak MA, et al. Lectin galactoside-binding soluble 3 binding protein (LGALS3BP) is a tumor-associated immunomodulatory ligand for CD33-related Siglecs[J]. J Biol Chem, 2014,289(48):33481-33491.
|
2 |
Macauley MS, Crocker PR, Paulson JC. Siglec-mediated regulation of immune cell function in disease[J]. Nat Rev Immunol,2014,14(10):653-666.
|
3 |
Daëron M, Jaeger S, Du Pasquier L, et al. Immunoreceptor tyrosine-based inhibition motifs: a quest in the past and future[J]. Immunol Rev,2008,224:11-43.
|
4 |
Barrow AD, Trowsdale J. You say ITAM and I say ITIM, let’s call the whole thing off: the ambiguity of immunoreceptor signalling[J]. Eur J Immunol,2006,36(7):1646-1653.
|
5 |
Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system[J]. Nat Rev Immunol,2007,7(4):255-266.
|
6 |
Crocker PR, Varki A. Siglecs, sialic acids and innate immunity[J]. Trends Immunol,2001,22(6):337-342.
|
7 |
Crocker PR. Siglecs: sialic-acid-binding immunoglobulin-like lectins in cell-cell interactions and signalling[J]. Curr Opin Struct Biol,2002,12(5):609-615.
|
8 |
Jia Y, Yu H, Fernandes SM, et al. Expression of ligands for Siglec-8 and Siglec-9 in human airways and airway cells[J]. J Allergy Clin Immunol,2015,135(3):799-810
|
9 |
Rashmi R, Bode BP, Panesar N, et al. Siglec-9 and SHP-1 are differentially expressed in neonatal and adult neutrophils[J]. Pediatr Res,2009,66(3):266-271..
|
10 |
Higuchi H, Shoji T, Iijima S, et al. Constitutively expressed Siglec-9 inhibits LPS-induced CCR7, but enhances IL-4-induced CD200R expression in human macrophages[J]. Biosci Biotechnol Biochem,2016,80(6):1141-1148.
|
11 |
Jandus C, Boligan KF, Chijioke O, et al. Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance[J]. J Clin Invest,2014,124(4):1810-1820.
|
12 |
Avril T, Attrill H, Zhang J, et al. Negative regulation of leucocyte functions by CD33-related siglecs[J]. Biochem Soc Trans,2006,34(Pt 6):1024-1027.
|
13 |
Varki A, Angata T. Siglecs--the major subfamily of I-type lectins[J]. Glycobiology,2006,16(1):1R-27R.
|
14 |
Secundino I, Lizcano A, Roupé KM, et al. Host and pathogen hyaluronan signal through human siglec-9 to suppress neutrophil activation[J]. J Mol Med (Berl),2016,94(2):219-233.
|
15 |
Shlapatska LM, Mikhalap SV, Berdova AG, et al. CD150 association with either the SH2-containing inositol phosphatase or the SH2-containing protein tyrosine phosphatase is regulated by the adaptor protein SH2D1A[J]. J Immunol,2001,166(9):5480-5487.
|
16 |
Avril T, Floyd H, Lopez F, et al. The membrane-proximal immunoreceptor tyrosine-based inhibitory motif is critical for the inhibitory signaling mediated by Siglecs-7 and -9, CD33-related Siglecs expressed on human monocytes and NK cells[J]. J Immunol,2004,173(11):6841-6849.
|
17 |
von GS, Yousefi S, Seitz M, et al. Siglec-9 transduces apoptotic and nonapoptotic death signals into neutrophils depending on the proinflammatory cytokine environment[J]. Blood,2005,106(4):1423-1431.
|
18 |
von GS, Simon HU. Cell death modulation by intravenous immunoglobulin[J]. J Clin Immunol,2010,30(Suppl 1):S24-S30.
|
19 |
Zhang JQ, Nicoll G, Jones C, et al. Siglec-9, a novel sialic acid binding member of the immunoglobulin superfamily expressed broadly on human blood leukocytes[J]. J Biol Chem,2000,275(29):22121-22126.
|
20 |
Thieblemont N, Wright HL, Edwards SW, et al. Human neutrophils in auto-immunity[J]. Semin Immunol,2016,28(2):159-173.
|
21 |
McCracken JM, Allen LA. Regulation of human neutrophil apoptosis and lifespan in health and disease[J]. J Cell Death,2014,7(8):15-23.
|
22 |
Kobayashi SD, Braughton KR, Whitney AR, et al. Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils[J]. Proc Natl Acad Sci USA,2003,100(19):10948-10953.
|
23 |
Kobayashi SD, Voyich JM, Buhl CL, et al. Global changes in gene expression by human polymorphonuclear leukocytes during receptor-mediated phagocytosis: cell fate is regulated at the level of gene expression[J]. Proc Natl Acad Sci USA,2002,99(10):6901-6906.
|
24 |
Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level[J]. Nat Rev Mol Cell Biol,2008,9(3):231-241.
|
25 |
Maianski NA, Geissler J, Srinivasula SM, et al. Functional characterization of mitochondria in neutrophils: a role restricted to apoptosis[J]. Cell Death Differ,2004,11(2):143-153.
|
26 |
Green DR, Kroemer G. The pathophysiology of mitochondrial cell death[J]. Science,2004,305(5684):626-629.
|
27 |
Fox JL, MacFarlane M. Targeting cell death signalling in cancer: minimising 'Collateral damage’[J]. Br J Cancer,2016,115(1):5-11.
|
28 |
李敏,林俊. 细胞凋亡途径及其机制[J]. 国际妇产科学杂志,2014,(2):103-107.
|
29 |
Jia LT, Chen SY, Yang AG. Cancer gene therapy targeting cellular apoptosis machinery[J]. Cancer Treat Rev,2012,38(7):868-876.
|
30 |
Dong Z, Liang S, Hu J, et al. Autophagy as a target for hematological malignancy therapy[J]. Blood Rev,2016,30(5):369-380.
|
31 |
Chen Y, Klionsky DJ. The regulation of autophagy -- unanswered questions[J]. J Cell Sci,2011,124(Pt 2):161-170.
|
32 |
Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation[J]. Nature,2011,469(7330):323-335.
|
33 |
Ryter SW, Choi AM. Autophagy in lung disease pathogenesis and therapeutics[J]. Redox Biol,2015,4(4):215-225.
|
34 |
Chargui A, El MMV. Autophagy mediates neutrophil responses to bacterial infection[J]. APMIS,2014,122(11):1047-1058.
|
35 |
Lamark T, Johansen T. Aggrephagy: selective disposal of protein aggregates by macroautophagy[J]. Int J Cell Biol,2012,(7):736905.
|
36 |
Sônego F, Castanheira FV, Ferreira RG, et al. Paradoxical Roles of the Neutrophil in Sepsis: Protective and Deleterious[J]. Front Immunol,2016,7(1):155-156.
|
37 |
von GS, Simon HU. Autophagic-like cell death in neutrophils induced by autoantibodies[J]. Autophagy,2007,3(1):67-68.
|
38 |
Duquette SC, Fischer CD, Feener TD, et al. Anti-inflammatory effects of retinoids and carotenoid derivatives on caspase-3-dependent apoptosis and efferocytosis of bovine neutrophils[J]. Am J Vet Res,2014,75(12):1064-1075.
|
39 |
Ando M, Tu W, Nishijima K, et al. Siglec-9 enhances IL-10 production in macrophages via tyrosine-based motifs[J]. Biochem Biophys Res Commun,2008,369(3):878-883.
|
40 |
Bayry J, Thirion M, Misra N, et al. Mechanisms of action of intravenous immunoglobulin in autoimmune and inflammatory diseases[J]. Neurol Sci,2003,24(Suppl 4):S217-S221.
|
41 |
Kaveri SV. Mechanisms of action of intravenous immunoglobulins[J]. Bull Acad Natl Med,2012,196(1):39-47, 48.
|
42 |
Trautmann A, Akdis M, Schmid-Grendelmeier P, et al. Targeting keratinocyte apoptosis in the treatment of atopic dermatitis and allergic contact dermatitis[J]. J Allergy Clin Immunol,2001,108(5):839-846.
|
43 |
Prins C, Kerdel FA, Padilla RS, et al. Treatment of toxic epidermal necrolysis with high-dose intravenous immunoglobulins: multicenter retrospective analysis of 48 consecutive cases[J]. Arch Dermatol,2003,139(1):26-32.
|
44 |
Altznauer F, von GS, Späth P, et al. Concurrent presence of agonistic and antagonistic anti-CD95 autoantibodies in intravenous Ig preparations[J]. J Allergy Clin Immunol,2003,112(6):1185-1190.
|
45 |
von GS, Schaub A, Vogel M, et al. Immunologic and functional evidence for anti-Siglec-9 autoantibodies in intravenous immunoglobulin preparations[J]. Blood,2006,108(13):4255-4259.
|
46 |
McMillan SJ, Sharma RS, Richards HE, et al. Siglec-E promotes β2-integrin-dependent NADPH oxidase activation to suppress neutrophil recruitment to the lung[J]. J Biol Chem,2014,289(29):20370-20376.
|
47 |
Hoyal CR, Gutierrez A, Young BM, et al. Modulation of p47PHOX activity by site-specific phosphorylation: Akt-dependent activation of the NADPH oxidase[J]. Proc Natl Acad Sci USA,2003,100(9):5130-5135.
|
48 |
Moreland JG, Fuhrman RM, Pruessner JA, et al. CD11b and intercellular adhesion molecule-1 are involved in pulmonary neutrophil recruitment in lipopolysaccharide-induced airway disease[J]. Am J Respir Cell Mol Biol,2002,27(4):474-480.
|
49 |
McMillan SJ, Sharma RS, McKenzie EJ, et al. Siglec-E is a negative regulator of acute pulmonary neutrophil inflammation and suppresses CD11b β2-integrin-dependent signaling[J]. Blood,2013,121(11):2084-2094.
|
50 |
Hughes BJ, Hollers JC, Crockett-Torabi E, et al. Recruitment of CD11b/CD18 to the neutrophil surface and adherence-dependent cell locomotion[J]. J Clin Invest,1992,90(5):1687-1696.
|
51 |
Frommhold D, Mannigel I, Schymeinsky J, et al. Spleen tyrosine kinase Syk is critical for sustained leukocyte adhesion during inflammation in vivo[J]. BMC Immunol,2007,8(10):31-32.
|
52 |
Haddad EB, Birrell M, McCluskie K, et al. Role of p38 MAP kinase in LPS-induced airway inflammation in the rat[J]. Br J Pharmacol,2001,132(8):1715-1724.
|
53 |
Yousefi S, Perozzo R, Schmid I, et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis[J]. Nat Cell Biol,2006,8(10):1124-1132.
|