切换至 "中华医学电子期刊资源库"

中华实验和临床感染病杂志(电子版) ›› 2016, Vol. 10 ›› Issue (03) : 380 -384. doi: 10.3877/cma.j.issn.1674-1358.2016.03.028

基础论著

CNP2线粒体定位信号以及磷酸酯酶活性对抑制HIV-1 Gag蛋白组装作用的影响
梁顺涛1, 戴国瑞1, 李蕊1, 蒋栋1, 曾辉1,()   
  1. 1. 100015 北京,首都医科大学附属北京地坛医院传染病研究所;新发突发传染病研究北京市重点实验室
  • 收稿日期:2015-08-27 出版日期:2016-06-15
  • 通信作者: 曾辉
  • 基金资助:
    国家自然科学基金(No. 31170853); 教育部留学回国启动基金(No. jwsl453); 北京市自然科学基金(No. 5162011)

Effect of mitochondrial targeting signal and phosphodiesterase activity of CNP2 on its inhibitory property against HIV-1 assembly

Shuntao Liang1, Guorui Dai1, Rui Li1, Dong Jiang1, Hui Zeng1,()   

  1. 1. Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, China
  • Received:2015-08-27 Published:2016-06-15
  • Corresponding author: Hui Zeng
引用本文:

梁顺涛, 戴国瑞, 李蕊, 蒋栋, 曾辉. CNP2线粒体定位信号以及磷酸酯酶活性对抑制HIV-1 Gag蛋白组装作用的影响[J]. 中华实验和临床感染病杂志(电子版), 2016, 10(03): 380-384.

Shuntao Liang, Guorui Dai, Rui Li, Dong Jiang, Hui Zeng. Effect of mitochondrial targeting signal and phosphodiesterase activity of CNP2 on its inhibitory property against HIV-1 assembly[J]. Chinese Journal of Experimental and Clinical Infectious Diseases(Electronic Edition), 2016, 10(03): 380-384.

目的

研究CNP2在线粒体上的定位以及磷酸酯酶活性是否参与抑制HIV-1病毒颗粒组装。

方法

采用RT-PCR扩增野生型CNP2编码区,插入到真核表达载体pcDNA5,构建融合蛋白Flag-CNP2的表达质粒pcDNA5-Flag-CNP2。应用融合PCR诱导突变法构建CNP1及CNP2突变表达载体。CNP表达载体分别与HIV-1假病毒包装质粒pLP1、pLP2、pLP/VSVG、pLenti6-EGFP共同瞬时转染293T细胞。集落形成实验检测上清病毒滴度,Western blot检测细胞中Gag蛋白p55、p24以及细胞培养上清中p24的表达情况。

结果

与对照组比较,CNP2、CNP1、CNP2-S9/22A可以显著抑制细胞中病毒的释放,培养上清中病毒滴度显著降低(滴度分别为5.66、4.20、5.75、6.63 Log10IU/ml,NC组为7.65 Log10 IU/ml;t = 58.23、17.24、12.77、6.131,P = 0.0035、0.0066、0.0004、0.0039)。CNP1抑制HIV-1病毒颗粒组装作用更强,Western blot检测培养上清中病毒蛋白完全p24消失。磷酸酯酶结构域(2HM)突变后CNP2抑制HIV-1病毒颗粒组装的作用显著降低。

结论

CNP2抑制HIV-1病毒颗粒组装需要磷酸酯酶结构域(2HM)的参与,CNP2的线粒体定位信号可能会影响其抑制HIV病毒颗粒组装的作用。

Objective

To confirm whether the mitochondrial targeting and phosphodiesterase activity of CNP2 affect its inhibitory ability against HIV-1 assembly.

Methods

Vector expressing wild type CNP2 with N-terminal FLAG tag was constructed by RT-PCR of CNP2 coding region from Huh7 cell and subsequently inserted into eukaryotic expressing vector pcDNA5 to get pcDNA5-Flag-CNP2. CNP1 and CNP2 mutants CNP2-S9/22A, CNP-2HM was constructed by PCR based mutagenesis and inserted into the same vector. CNP constructs was respectively transfected into 293T cell with pseudotyped HIV-1 particle assemble vectors pLP1, pLP2, pLP/VSVG, pLenti6-EGFP. Pseudotyped HIV-1 particle titer was tested by foci formation after infection of 293T cell and also estimated particle p24 by Western blot. TP55 gag precursor and p24 in transfected cell were tested by Western blot.

Results

CNP2, CNP1 and CNP2-S9/22A could potently inhibit HIV titers in transfection supernant (t = 58.23, 17.24, 12.77, 6.131; P = 0.0035, 0.0066, 0.0004, 0.0039). The inhibitory property of CNP1 without mitochondrial targeting signal was more potently than CNP2. 2HM mutant losing phosphodiesterase activity could only minimally inhibit HIV-1 assembly.

Conclusions

CNP2 inhibition of HIV-1 assembly needs the phosphodiesterase activity, and mitochondrial targeting signal could modulate the inhibitory function.

表1 扩增CNP2、CNP2-S9/22A、CNP1和CNP2-2HM等片段所需引物
图1 CNP 2 MTS和2HXT结构域与突变型载体模式图
图2 阳性克隆质粒酶切鉴定结果
图3 阳性克隆质粒代表性测序结果
图4 CNP2及突变型载体对细胞上清中病毒滴度的影响
图5 转染CNP2及其突变载体对抑制Gag蛋白组装的影响
1
Nasr N, Maddocks S, Turville SG, et al. HIV-1 infection of human macrophages directly induces viperin which inhibits viral production[J]. Blood,2012,120(4):778-788.
2
Perez-Caballero D, Zang T, Ebrahimi A, et al. Tetherin inhibits HIV-1 release by directly tethering virions to cells[J]. Cell,2009,139(3):499-511.
3
Schoggins JW, Rice CM. Interferon-stimulated genes and their antiviral effector functions[J]. Curr Opin Viro,2011,1(6):519-925.
4
Rosa A, Chande A, Ziglio S, et al. HIV-1 Nef promotes infection by excluding SERINC5 from virion incorporation[J]. Nature,2015,526(7572):212-217.
5
Powell RD, Holland PJ, Hollis T, et al. Aicardi-Goutieres syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase[J]. J Bio Chem,2011,286(51):43596-43600.
6
Pincetic A, Kuang Z, Seo EJ, et al.The interferon-induced gene ISG15 blocks retrovirus release from cells late in the budding process[J]. J Virol,2010,84(9):4725-4736.
7
Monroe KM, Yang Z, Johnson JR, et al. IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV[J]. Science,2014,343(6169):428-432.
8
Goncalves A, Karayel E, Rice GI, et al. SAMHD1 is a nucleic-acid binding protein that is mislocalized due to aicardi-goutieres syndrome-associated mutations[J]. Hum Mutat,2012,33(7):1116-1122.
9
Gao P, Ascano M, Wu Y, et al. Cyclic [G(2’,5’)pA(3’,5’)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase[J]. Cell,2013,153(5):1094-1107.
10
Yu J, Li M, Wilkins J, et al. IFITM proteins restrict HIV-1 infection by antagonizing the envelope glycoprotein[J]. Cell Rep,2015,13(1):145-156.
11
White TE, Brandariz-Nunez A, Valle-Casuso JC, et al. Contribution of SAM and HD domains to retroviral restriction mediated by human SAMHD1[J]. Virology,2013,436(1):81-90.
12
Usami Y, Wu Y, Gottlinger HG. SERINC3 and SERINC5 restrict HIV-1 infectivity and are counteracted by Nef[J]. Nature,2015,526(7572):218-223.
13
Sun L, Wu J, Du F, et al. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway[J]. Science,2013,339(6121):786-791.
14
Seo JY, Yaneva R, Hinson ER, et al. Human cytomegalovirus directly induces the antiviral protein viperin to enhance infectivity[J]. Science,2011,332(6033):1093-1097.
15
Wu CY, Lu J, Cao Q, et al. Expression of 2’,3’-cyclic nucleotide 3’-phosphodiesterase in the amoeboid microglial cells in the developing rat brain[J]. Neuroscience,2006,142(2):333-341.
16
Lee J, O’Neill RC, Park MW, et al. Mitochondrial localization of CNP2 is regulated by phosphorylation of the N-terminal targeting signal by PKC: implications of a mitochondrial function for CNP2 in glial and non-glial cells[J]. Mol Cell Neurosci,2006,31(3):446-462.
17
Wilson SJ, Schoggins JW, Zang T, et al. Inhibition of HIV-1 particle assembly by 2’,3’-cyclic-nucleotide 3’-phosphodiesterase[J]. Cell Host Microbe,2012,12(4):585-597.
18
Gravel M, Robert F, Braun PE. 2’,3’-Cyclic nucleotide 3’-phosphodiesterase: a novel RNA-binding protein that inhibits protein synthesis[J]. J Neurosci Res,2009,87(5):1069-1079.
19
Myllykoski M, Itoh K, Kangas SM, et al. The N-terminal domain of the myelin enzyme 2’,3’-cyclic nucleotide 3’-phosphodiesterase: direct molecular interaction with the calcium sensor calmodulin[J]. J Neurochem,2012,123(4):515-524.
20
Siegal FP, Kadowaki N, Shodell M, et al. The nature of the principal type 1 interferon-producing cells in human blood[J]. Science,1999,284(5421):1835-1837.
21
Schoggins JW, Wilson SJ, Panis M, et al. A diverse range of gene products are effectors of the type I interferon antiviral response[J]. Nature,2011,472(7344):481-485.
22
Espert L, Degols G, Mechti N. Interferon-induced exonuclease ISG20 exhibits an antiviral activity against human immunodeficiency virus type 1[J]. J Gen Virol,2005,86(Pt 8):2221-2229.
23
Doitsh G, Galloway NL, Geng X, et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection[J]. Nature,2014,505(7484):509-514.
24
Gao D, Wu J, Wu YT, et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses[J]. Science,2013,341(6148):903-906.
25
Denner J, Eschricht M, Lauck M, et al. Modulation of cytokine release and gene expression by the immunosuppressive domain of gp41 of HIV-1[J]. PloS One,2013,8(1):e55199.
26
Beloglazova N, Flick R, Tchigvintsev A, et al. Nuclease activity of the human SAMHD1 protein implicated in the Aicardi-Goutieres syndrome and HIV-1 restriction[J]. J Bio Chem,2013,288(12):8101-8110.
27
Ryan C, O’Neill JM, Peter EB. CNP2 mRNA Directs Synthesis of Both CNP1 and CNP2 Polypeptides[J]. J Neurosci Res,1997,50(2):248-257.
No related articles found!
阅读次数
全文


摘要